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Abstract—Recent years have witnessed the significant progress
on convolutional neural networks (CNNs) in dynamic scene
deblurring. While most of the CNN models are generally learned
by the reconstruction loss defined on training data, incorporating
suitable image priors as well as regularization terms into the
network architecture could boost the deblurring performance.
In this work, we propose a Dark and Bright Channel Priors
embedded Network (DBCPeNet) to plug the channel priors into
a neural network for effective dynamic scene deblurring. A
novel trainable dark and bright channel priors embedded layer
(DBCPeL) is developed to aggregate both channel priors and
blurry image representations, and a sparse regularization is
introduced to regularize the DBCPeNet model learning. Further-
more, we present an effective multi-scale network architecture,
namely image full scale exploitation (IFSE), which works in both
coarse-to-fine and fine-to-coarse manners for better exploiting
information flow across scales. Experimental results on the GoPro
and Köhler datasets show that our proposed DBCPeNet performs
favorably against state-of-the-art deep image deblurring methods
in terms of both quantitative metrics and visual quality.

Index Terms—Dynamic scene deblurring, Convolutional neural
network, Dark and bright channel priors, Multi-scale strategy

I. INTRODUCTION

REPRODUCING the visual richness of a real-world scene
is an essential goal of digital photography. The real

images, however, are often blurred during image acquisition
due to the effect of many factors such as camera shake, object
motion, and out-of-focus [1]. The resulting blurry images
will not only degrade the perceptual quality of photos but
also degenerate the performance of many image analytic and
understanding models [2]. Blind image deblurring, which has
been studied extensively in low level vision for decades [3],
plays an essential role in improving the visual quality of real-
world blurry images.

In general, the purpose of blind image deblurring is to
recover the latent sharp image y from its blurry observation:
x = k ⊗ y + n, where k is an unknown blur kernel (i.e.,
uniform or non-uniform), n is an additive white Gaussian noise
and ⊗ denotes the convolution operator. This inverse problem,
however, is severely ill-posed and requires extra information
on latent image y to constrain the solution space. Thus, there
are mainly two categories of approaches for utilizing prior
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knowledge, i.e., optimization-based and deep learning based
deblurring methods. Optimization-based approaches explicitly
model prior knowledge to regularize the solution space of blur
kernel [4], [5], [6], [7], [8] and latent image [9], [10], [11],
[12], [13] via an optimization framework. In contrast, deep
learning based methods [1], [2], [14], [15] implicitly learn a
direct mapping function (e.g., convolutional neural network,
CNN) from degraded image to latent clear image.

For the blind image deblurring problems, optimization-
based and deep learning-based methods respectively have
their merits and limitations. Optimization-based methods are
flexible in incorporating versatile priors or regularizations [4],
[5], [8], [11], [12] tailored for blind deblurring, but suffer
from the time-consuming optimization procedure and over-
simplified assumptions on blur kernels (e.g., spatially invariant
and uniform). Moreover, conventional image priors (e.g., total
variation [4]) are limited in blind deblurring and prone to the
ordinary solution of delta kernel. Stronger priors, e.g., `0-norm
[16] and normalized sparsity [5], are then suggested for blur
kernel estimation. On the other hand, deep learning methods
[1], [2], [14], [15] benefiting from end-to-end training and
joint optimization enjoy fast speed and flexibility in handling
spatially variant blur in the dynamic scene. However, deep
models may be limited in capturing specific priors for blind
deblurring. As for dynamic scene deblurring, existing dataset
[1] is of a relatively small scale, hindering the performance of
learned model.

Taking the merits and drawbacks of optimization-based and
deep learning-based methods into account, one interesting
question is that can we exploit prior models to constrain
the network architecture and/or loss functions for deblurring
performance improvement? Motivated by the effectiveness
of image prior in blind deblurring, in this paper, we pro-
pose a Dark and Bright Channel Priors embedded Network
(DBCPeNet) to help the restoration of latent clear image. The
key component of DBCPeNet is a novel trainable dark and
bright channel priors embedded layer (DBCPeL), which can
aggregate both channel priors and blurry image representations
to leverage their respective advantages. By enforcing sparsity
on both dark and bright channels of feature maps, we can
regularize the solution space of CNN during training, thereby
incorporating channel priors into DBCPeNet.

Moreover, existing deep dynamic scene deblurring models
[1], [14] usually adopt the multi-scale network architecture
to exploit coarse and middle level information for finer scale
image deblurring. However, these deep multi-scale network
architectures only consider the coarse-to-fine information flow.
That is, blind deblurring is first performed on the small
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(a) Blurry image (b) Our result (c) Ground-truth

Fig. 1: Deblurring result on a GoPro image [1]. (a) The blurry image; (b) our result; and (c) the Ground-truth image. Red box:
zoom-in view of the original local patch. Green box: zoom-in view of the dark channel of its corresponding local patch. Blue
box: zoom-in view of the bright channel of its corresponding local patch.

scale, and then deblurring results (or latent representations)
are combined with feature representations on a larger scale for
further refinement. Unfortunately, such a multi-scale network
architecture could not fully exploit the information flow across
scales. In this work, we show that feature representations
of larger scales actually can also benefit the dynamic scene
deblurring on a smaller scale. To this end, we present a
more effective multi-scale network architecture that works in
both coarse-to-fine and fine-to-coarse manners. By training the
deblurring network in this new multi-scale network structure,
which we call image full scale exploitation (IFSE), we can
better exploit the information flow across scales.

Experimental results on GoPro [1] and Köhler [17] datasets
demonstrate that our DBCPeNet outperforms state-of-the-art
deep dynamic scene deblurring methods. As shown in Figure
1, one can see that the dark and bright channels of our deblur-
ring result are sparser than the blurry image. The contribution
of this paper is two-fold:
• We propose a novel trainable structural layer, namely dark

and bright channel priors embedded layer (DBCPeL),
which can aggregate data information and prior knowl-
edge (i.e., priors on dark and bright channels) to leverage
their merits but avoid limitations. DBCPeL provides an
effective way to plug prior knowledge (i.e., statistical
properties) into a deep deblurring network in an end-to-
end manner.

• We introduce a new multi-scale network structure, namely
image full scale exploitation (IFSE), which works in
both coarse-to-fine and fine-to-coarse manners to fully
exploit different resolution images for maximizing the
information flow.

The remainder of this paper is organized as follows. Section
II briefly reviews the relevant works of optimization based de-
blurring methods and deep learning based deblurring methods.
Section III presents the proposed DBCPeNet for aggregating
both data information and channel prior knowledge. Section
IV presents the experimental results, and Section V provides
some concluding remarks.

II. RELATED WORK

In this section, we briefly review the recent optimization-
based and deep learning based image deblurring methods.

A. Optimization-based Deblurring Methods

The optimization-based methods aim to develop effective
image priors to favor clear images over the blurry one.
Representative priors include sparse gradients [9], [18], [19],
[20], hyper-Laplacian prior [21], normalized sparsity prior [5],
`0-norm prior [16], patch recurrence prior [22] and discrimi-
natively learned prior [8], [13]. Taking advantage of the afore-
mentioned priors, existing optimization-based methods could
deliver competitive results on generic natural images. These
approaches, however, cannot be generalized well to handle
domain specific images. Thus, specific priors are introduced
for specific images, e.g., light streak prior [23] for low light
images, and a combination of intensity and gradient prior
[24] for text images. Recently, Pan et al. [11] developed the
dark channel prior (DCP) [25] to enforce sparsity on the dark
channel of latent image and achieved promising result on both
generic and specific images. With the success of [11], Yan
et al. [12] further introduced a bright channel prior (BCP) to
solve the corner case image, which contains a large amount of
bright pixels. By plugging the channel priors (a combination of
BCP and DCP) into the deblurring model, Yan et al. achieved
state-of-the-art results on various scenarios.

Although the optimization based algorithms have demon-
strated their effectiveness in image deblurring, the simplified
assumptions on the blur model and time-consuming parameter-
tuning process are two lethal problems to hinder their per-
formance in real-world cases. In this work, we utilize a
realistic GoPro dataset [1] to end-to-end train a new multi-
scale network for latent sharp image restoration. To make the
learning of image representations more effective, the proposed
network imposes dark and bright channel priors and sparse
constraint in the feature domain.
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(a) Blurry image (b) Dark channel of (a) (c) Bright channel of (a)

(d) Ground-truth (e) Dark channel of (d) (f) Bright channel of (d)

Fig. 2: The dark and bright channels of the blurry and ground-truth images.

B. Deep Learning based Deblurring Methods

Deep learning based methods focus on exploiting external
training data to learn a mapping function in accordance with
the degradation process [26], [27]. The powerful end-to-
end training paradigm and the non-linear modeling capability
make CNNs a promising approach to image deblurring. Early
CNN-based deblurring methods aim to mimic conventional
deblurring frameworks for the estimation of both latent image
and blur kernel. Prior works [28], [29] first use a network
to predict the non-uniform blur kernel and then utilize a
non-blind deblurring method [30] to restore images. In [31],
Schuler et al. introduced a two-stages network to simulate
iterative optimization. In [32], Chakrabarti et al. utilized a
network to predict frequency coefficients of blur kernels.
However, these methods may fail when the estimated kernel is
inaccurate [33]. Therefore, more recent approaches prefer to
train kernel estimation-free networks to restore latent images
directly. Specifically, Nah et al. [1] proposed a multi-scale
CNN to progressively recover the latent image. Tao et al.
[14] introduced a scale-recurrent network equipped with a
ConvLSTM layer [34] to further ensure information flow
between different resolution images. Kupyn et al. [2] adopted
the Wasserstein GAN [35], [36] as an objective function to
restore the texture details of latent image. Zhang et al. [15]
employed spatially variant recurrent neural networks (RNNs)
to reduce the computational cost.

Considering that the limited amount of training data and
the disappreciation of prior knowledge are two main factors
hampering the performance improvement, we propose to in-
troduce the priors knowledge (i.e., DCP and BCP) into CNN
to regularize the solution space of clear images. In addition,
a new multi-scale structure, which works in both coarse-to-
fine and fine-to-coarse manners, is introduced to better exploit
image information across scales.

III. DARK AND BRIGHT CHANNEL PRIORS EMBEDDED
NETWORK

In this section, we introduce a dark and bright channel
priors embedded network (DBCPeNet) for dynamic scene
deblurring. To begin with, we first present the motivation
of our proposed DBCPeNet. Then, we describe in detail
the network architecture, followed by the definitions of our
proposed image full scale exploitation (IFSE), dark and bright
channel priors embedded layer (DBCPeL) and the objective
function.

A. Motivation

Given a single blurry image xi, existing CNN-based meth-
ods aim at learning a mapping function FΘ to generate
an estimation of latent sharp image ŷi, which is required
to approximate the ground-truth yi. This procedure can be
formulated as:

Θ̂ = argmin
Θ

∑
i
`(ŷi,yi), s.t. ŷi = FΘ(xi) (1)

where (xi, yi) refer to the i-th image pair in the training
dataset and Θ is the parameter of mapping function. However,
such a formulation is limited in capturing image priors speci-
fied to blind deblurring, which is generally very different from
those for non-blind restoration. Moreover, the existing training
image pairs are insufficient to learn an effective mapping
function FΘ. Therefore, incorporating suitable image priors
as well as regularization terms into the network architecture
is essential to further improve the deblurring performance.

In [11], [12], it is argued that the dark/bright channel priors
and sparse constraint favor clear images over the blurry ones,
and this claim has been verified on natural images, as well as
face, text, and low illumination images. In general, a blurred
image can be modeled as the output of convolving a sharp
image with (uniform or non-uniform) blur kernels, and the
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Fig. 3: Illustration of our proposed DBCPeNet architecture.

dark and bright channels are formed by the highest and lowest
values across the RGB channels. As described in [25], [11],
[12], the dark channel D(·) and the bright channel B(·) are
defined as:

D(I)(x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
Ic(y)

)

B(I)(x) = max
y∈Ω(x)

(
max

c∈{r,g,b}
Ic(y)

) (2)

where I is a given image, x and y denote pixel locations,
Ω(x) is a local patch centered at x, and Ic is a color channel
of image I .

Since a dark/bright pixel will be averaged with its neighbor-
ing high/low intensity pixels during the blurring process, the
dark channel of a blurred image would be less dark and the
bright channel would be less bright, as illustrated in Figure 2.
Inspired by [11], [12], we find that enforcing sparsity on the
feature representations of dark and bright channels favors clear
images over blurred ones. Thus, we propose a novel trainable
DBCPeL that aggregates both blurry image and dark/bight
channel representations to enhance deblurring performance.
Then, the Eqn. (1) can be rewritten as:

Θ̂ = argmin
Θ

∑
i
`(ŷi,yi), s.t. ŷi = FΘ(xi|Λ,Ω) (3)

where Λ and Ω are channel representations under the con-
straint of dark and bright channel priors. By this way, we
embed the image priors into the mapping function FΘ to
generate higher quality latent sharp image.

B. Architecture

Most of the traditional deblurring methods and the CNN-
based dynamic scene deblurring networks [1], [14] prefer
to utilize the multi-scale structure where the coarse-to-fine
strategy is used for handling blur kernel. However, we found
that a larger scale feature representations can also benefit the
dynamic scene deblurring at a smaller scale. A multi-scale
network architecture that works in both coarse-to-fine and fine-
to-coarse manners could help the network fully exploit the
information flow across scales.

The overall architecture of our proposed DBCPeNet is illus-
trated in Figure 3. It contains three sub-networks respectively
for three scales, and each of them consists of three major
components: (i) input and output; (ii) encoder and decoder;
(iii) feature mapper. Note that instead of utilizing the Rectifier
Linear Units (ReLU) [37], we take the parametric ReLU
(PReLU) [38] as activation function since it can improve the
modeling capability with negligible extra computational cost.
Unless denoted otherwise, all the convolution filters are set to
3×3, instead of 5×5 as utilized by most of the other dynamic
scene deblurring networks (e.g., [1] and [14]). Although a filter
of size 5×5 has more parameters than two filters of size 3×3,
the one utilizing 3× 3 filters is more efficient and additional
nonlinearity can be inserted between them [39]. The stride size
for all convolution layers is set to 1 and the number of feature
maps in each layer is set to 64, except for the last layer and the
proposed DBCPeL, where the number of feature maps is set to
3 and {3, 64, 3}, respectively. The details of each component
are described as follows.
Input and Output. An effective multi-scale network architec-
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ture is utilized in this work to restore the latent sharp image
from a coarser scale to finer scales. Consider an image pair
(x,y) ∈ RH×W×C , where H×W is the pixel resolution and
C is the number of channels, which is set to 3. We first use
bicubic interpolation to progressively downsample the image
pair with the ratio of 1

2 , and generate 3 scales of image pairs
with the resolution of {H ×W, H2 ×

W
2 ,

H
4 ×

W
4 }. We then

take those blurred images at each scale as inputs to produce
their corresponding sharp images. The sharp one at the original
resolution is considered as the final output.
Encoder and Decoder. Each scale of the encoder consists
of 4 convolution layers, the proposed DBCPeL and a shuffle
operation with factor 1

2 . As for the decoders, they basically
mirror the architecture of the encoders, except that the factor
of shuffle operation [40] is set to 2. The encoder and decoder
networks are mainly designed for three purposes. (i) They
progressively transform images on different scales to extract
shallow features (in encoders) and transform them back to
the resolution of inputs (in decoders). (ii) They work in both
coarse-to-fine and fine-to-coarse manners for better exploiting
information flow across scales. More details of the proposed
multi-scale structure are described in Subsection III-C. (iii)
They integrate both dark and bright channel priors into the net-
work via DBCPeL for regularizing the model learning. More
details of the proposed DBCPeL are presented in Subsection
III-D.
Feature Mapper. The feature mapper module, which aims to
refine the shallow features progressively, is an essential part of
latent image restoration. One critical factor for reducing blur
artifacts is the size of receptive field. To enlarge the receptive
field, we (i) stack a set of convolutional layers to achieve
a larger depth network and (ii) utilize the shuffle operations
for downsampling and upsampling features. To ensure that a
deeper neural network can converge to a local minimum, we
adopt the residual blocks to speed-up the training procedure
[41], [26]. Besides, the feature mapper module utilizes the long
skip connection and short skip connection to make full use of
hierarchical features in all convolutional layers. A similar skip
connection strategy has been utilized in a very recent work
[42]. As illustrated in Figure 3, the feature mapper contains
16 residual-in-residual blocks (RIRBlock), and each of them
has 4 residual blocks (ResBlock). The ResBlock consists of 2
convolution layers and a PReLU activation function. Since we
utilize the filter of size 3×3, the total number of parameters of
our DBCPeNet is almost the same as previous methods. Note
that all the weights across different scales of feature mapper
sub-modules are shared.

C. Image Full Scale Exploitation

To remove the large blur kernels, previous blind deblurring
methods [43], [1], [14] often utilize the multi-scale strategy
to progressively predict the blur kernel and the latent image.
Generally, methods are first performed at the smallest scale
of the blurry image to estimate its corresponding coarsest
scale kernel and latent sharp image, and then the coarsest
deblurring result is combined with the larger scale blurry input
for further refinement. However, such a coarse-to-fine strategy

could not fully exploit the information flow across scales
because we find that: (i) the information of finer scale blurry
image representation is beneficial for the estimation of coarser
scale latent sharp image; and (ii) the combination in shallow
feature domain can yield a better result than image (RGB)
domain. Unlike previous methods [1], [43], [14] that directly
concatenate the upsampled coarser scale latent sharp image
with the finer scale blurry image, we propose a new multi-
scale structure, namely image full scale exploitation (IFSE),
which works in both coarse-to-fine and fine-to-coarse manners
to ensure the information flow across different scale images
and expand the receptive field. Specifically, in the fine-to-
coarse phase, the encoder first downsamples the finest scale
latent image representations by shuffling the features with
factor 1

2 to ensure the same resolution on different scales of
features (namely, a features of size m × n × c is shuffled
to m

2 ×
n
2 × 4c). Then the encoder further concatenates the

downsampled features with coarser scale features for restoring
the coarser scale sharp image. On the contrary, in the coarse-
to-fine phase, the decoder upsamples the restored coarser scale
features by shuffling the features of size m

2 ×
n
2 × 4c back to

m × n × c and concatenates them with finer scale features
to estimate the finer scale sharp image. Consequently, by
training the network in both coarse-to-fine and fine-to-coarse
manners, our proposed DBCPeNet can fully exploit different
scale images to maximize the information flow between them,
resulting in better performance. In Section IV-C, we will
conduct an ablation study to verify its effectiveness.

D. Dark and Bright Channel Priors Embedded Layer
Since the dark and bright channels of a sharp image is

sparser than a blurry image, the dark and bright channel
priors and sparse constraints favor clear images over blurred
images. Therefore, we propose an DBCPeL to aggregate blurry
image representation and dark/bright channel representation
together to regularize the solution space of CNN. Specifically,
it first learns 3 mapping functions Mθ, M[α|D] and M[β|B]

to transform the feature map f l−1 from previous layer into 3
new feature maps, including a deeper layer transformed feature
f l, a dark channel prior constrained feature Λ, and a bright
channel prior constrained feature Ω. It then adopts a con-
catenation operation to concatenate those 3 feature maps for
the integration of blurry image representation and dark/bright
channels representation. Formally, the proposed DBCPeL can
be expressed as:

[Λ, f l,Ω] = DBCPeL(f l−1)

f l =Mθ(f
l−1)

Λ =M[α|D](f
l−1)

Ω =M[β|B](f
l−1)

(4)

where [Λ, f l,Ω] denotes the concatenation of these feature
maps, and the subscripts [α|D] and [β|B] denote that the
parameters α and β are optimized under the dark and bright
channel priors constraint. To add dark and bright channel
priors constraint into a network, the DBCPeL utilizes (i) ex-
tractors to extract both dark and bright channel of features, and
(ii) the `1-regularization term to enforce sparsity in training.
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The extractor D(·) is designed to extract the dark channel
of Λ via computing its minimum values in a local patch. Its
forward function can be written as follows:

D(Λ)[h,w] = Λ[ID [h,w]]

ID [h,w] = argmini?∈Ψ[h,w,c]
Λ[i?]

(5)

The extractor B(·) aims to extract the bright channel of Ω
by calculating its maximum values in a local patch. Its forward
function can be formulated as:

B(Ω)[h,w] = Ω[IB[h,w]]

IB[h,w] = argmaxi?∈Ψ[h,w,c]
Ω[i?]

(6)

where Ψ[h,w,c] is the index set of inputs in a sub-window
centered at pixel location [h,w, c], ID [h,w] and IB[h,w] are the
masks that record the indices of the minimum and maximum
values in a local patch, respectively. The patch sizes for each
scale are set to {31× 31, 19× 19, 11× 11}. A single element
Λ[h,w,c] or Ω[h,w,c] of the input may be assigned to different
outputs of D(Λ)[h,w] or B(Ω)[h,w].

To ensure that the dark and bright channel priors can be
end-to-end trained with the network, the gradient of each
component should be calculated for back-propagation. The
backward function of extractors computes the partial derivative
of the loss function with respect to input variables Λi and Ωi
as follows:

∂L

∂Λi
=
∑
h

∑
w

∑
c

1{i = ID [h,w]}
∂L

∂D(Λ)[h,w]

∂L

∂Ωi
=
∑
h

∑
w

∑
c

1{i = IB[h,w]}
∂L

∂B(Ω)[h,w]

(7)

where i refers to the pixel location [h,w, c]. In other words,
the partial derivatives ∂L

∂D(Λ)[h,w]
and ∂L

∂B(Ω)[h,w]
are accumu-

lated if i is the argmin and argmax selected for D(Λ)[h,w]

and B(Ω)[h,w], respectively. In back-propagation, the partial
derivatives ∂L

∂D(Λ)[h,w]
and ∂L

∂B(Ω)[h,w]
are already calculated

by the backward function of the loss layer.
With the proposed DBCPeL, we can extract the dark and

bright channels of shallow features (i.e., D(Λ) and B(Ω)),
which can be further enforced to be sparse via the objective
function. By integrating the constrained features Λ and Ω
into the network, the proposed DBCPeNet can achieve a
better performance while using the same training dataset. The
ablation study in Section IV-C is conducted for the evaluation.

E. Loss Function

We utilize an `1-norm of the reconstruction error as loss
function for each scale. More specifically, we rewrite Eqn. (3)
as:

L =
1

N

N∑
i=1

3∑
j=1

‖yj
i − FΘ(xj

i |Λ
j ,Ωj)‖1 (8)

where N is the total number of training pairs (x, y) and j is
the number of scales, which is set to 3 in this paper. Symbol
(·)j refers to the image and feature on the j-th scale.

As described above, the sparsity regularization term is more
beneficial for restoring a sharp image than a blurred one. To
this end, we introduce an `1-regularization term to enforce
sparsity on both dark and bright channels of shallow features.
The objective function can be given by:

L =
1

N

N∑
i=1

3∑
j=1

‖yj
i − FΘ(xj

i |Λ
j ,Ωj)‖1

+ λ‖D(Λj)‖1 + ω‖1−B(Ωj)‖1

(9)

where λ and ω are the trade-off parameters. D(·) and B(·) are
the extractors to extract the dark channel and bright channel
of features, respectively. With the forwards and backwards
functions, the dark and bright channel extractors can be jointly
optimized with the network in an end-to-end manner.

IV. EXPERIMENTAL RESULTS

In this section, we provide experimental results to show the
advantage of our proposed DBCPeNet. We first present the ex-
perimental settings, including training and testing datasets, as
well as parameter settings. We then compare DBCPeNet with
state-of-the-art dynamic scene deblurring methods. Finally, we
conduct the ablation studies to verify the effectiveness of our
proposed DBCPeL and the IFSE strategy.

A. Experiment Settings

We implement our framework by using the Caffe toolbox
[44], and train the model on a PC equipped with an Intel
Core i7-7820X CPU, 128G RAM and a single Nvidia Quadro
GV100 GPU. Code, trained models and the deblurring results
on the GoPro and Köhler datasets can be downloaded at
https://github.com/csjcai/DBCPeNet.
Datasets. The proposed DBCPeNet is trained on the GoPro
training dataset [1], which contains 22 sequences with 2, 103
blurred/clear image pairs. Once the model is trained, we test
it on the GoPro testing dataset [1] and Köhler [17] dataset.
It is worth pointing out that, following previous methods [1],
[14], we use the linear subset of the GoPro dataset to train
the network and test the model. The GoPro testing dataset
consists of 11 sequences with 1, 111 image pairs, and the
Köhler dataset contains 4 latent images and 12 blur kernels.
To simulate the realistic blurring process, the GoPro dataset
generates blurred images through averaging 7 − 15 adjacent
short-exposure frames captured by a high-speed video camera
(240 fps), while the Köhler dataset replays the recorded 6D
real camera motion trajectory to synthesize blurred images. In
addition, we also test the proposed DBCPeNet on some of the
real-world blurred images provided in [45]. Note that since the
real-world blurred images in [45] do not have corresponding
ground-truth images, only visual comparison results are given.
Parameter Settings. To train the DBCPeNet, we crop the
GoPro training dataset into 256 × 256 × 3 patches and take
them as inputs. The mini-batch size in all the experiments is
set to 10, and the trade-off parameters λ and ω are set to 0.1
and 0.2, respectively. The Xavier [46] is utilized to initialize
the trainable variables. The Adam solver [47] with the default
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parameters (β1 = 0.9, β2 = 0.999 and ε = 10−8) was adopted
to optimize the network parameters. We fix the learning
rate as 10−4 and train the network with 600K iterations.
Additionally, we randomly rotate and/or flip the image patches
for data augmentation. The 1% additive Gaussian noise is also
randomly added to the blurred images for robust learning.

B. Comparisons with State-of-the-art Methods

In this subsection, both quantitative and qualitative evalua-
tions are conducted to verify the proposed DBCPeNet on the
benchmark datasets.
Quantitative Evaluations. Instead of uniform deblurring,
where the blurred image is modeled as output of convolving a
sharp image with a spatially invariant kernel, in this paper we
focus on dynamic scene (non-uniform) deblurring, where the
blurred image is modeled as convolving a sharp image with
a set of spatially variant kernels. In other words, for different
locations of the blurred image, the blur kernels are different.
We followed the same experimental setting as the prior arts
[1], [15], [14], and compared DBCPeNet with previous state-
of-the-art deblurring methods [48], [28], [1], [2], [15], [14]
in a quantitative way. A traditional dynamic scene deblurring
method [48] is also used as one of the competitors. The source
codes and trained models of the aforementioned methods can
be downloaded at the authors’ websites, except for [48] and
[15] whose results have been reported in previous works
[1] and [15], respectively. Additionally, we utilize the same
training dataset to retrain the network provided by [15] for its
evaluation on the Köhler dataset. The average PSNR, SSIM,
and MSSIM indices for different deblurring methods on GoPro
testing and Köhler datasets are shown in Table I. One can see
that on the GoPro testing dataset, the proposed DBCPeNet
significantly outperforms both the conventional non-uniform
deblurring method [48] and these recently developed CNN
based methods [28], [1], [2], [15], [14]. Even compared to the
previous state-of-the-art method [14], the proposed DBCPeNet
still has 0.84 dB improvement. While on the Köhler dataset, all
these deep learning based dynamic scene networks (including
our proposed DBCPeNet) trained on the GoPro dataset cannot
achieve satisfactory results. This is mainly because the GoPro
training dataset itself is not comprehensive enough to cover the
different types of kernels. Moreover, the kernel distribution and
the kernel size between GoPro and Köhler datasets are very
different. Thus, these dynamic scene deblurring networks have
comparative performance on the Köhler dataset. However, one
can still notice that our method has certain advantage over
competing methods.

Meanwhile, the running time by different methods for
processing an image of resolution 1280×720×3 is also listed
in Table I. One can notice that it takes a lot of time for a
conventional method to restore an image because of the time-
consuming iterative inference and the CPU implementation.
While for these end-to-end training networks, they can achieve
much faster speed to process an image on GPU. Considering
that these dynamic scene deblurring networks are implemented
by different deep learning platforms, the minor difference
between them can be neglected within the margin of error.

TABLE I: Average PSNR (dB), SSIM, MSSIM indices and
runtimes for different methods on the benchmark datasets (run-
ning time is measured for an image with size 1280×720×3).

Method GoPro Köhler TimePSNR SSIM PSNR MSSIM
Kim [48] 23.64 0.824 24.68 0.794 1 hr
Sun [28] 24.64 0.843 25.22 0.774 20 min
Nah [1] 29.08 0.914 26.48 0.808 2.87s
Tao [14] 30.26 0.934 26.75 0.837 0.62 s
Kupyn [2] 28.70 0.858 26.10 0.816 0.59s
Zhang [15] 29.19 0.931 25.71 0.800 0.76s

Proposed 31.10 0.945 26.79 0.839 0.65s

Qualitative Evaluations. We compare the visual quality of
restored images by our proposed DBCPeNet and these recently
developed CNN based dynamic scene deblurring networks,
including Nah [1], Tao [14], Kupyn [2], and Zhang [15].
Figures 4-6 shows several blurred images from the GoPro
[1] testing dataset and their corresponding deblurring results
produced by the above methods. One can see that although
these recently developed CNNs could remove the overall
motion blur artifacts, the results restored by them are not
perceptually pleasing enough because of the blurred edges
and noticeable artifacts. For example, in Figures 5, all these
previous CNN based deblurring networks could not recover
the text information (see the red box zoom-in region). While
in Figures 6, noticeable artifacts appear around the human
face. By contrast, benefiting from the dark and bright channels
prior constraint, our method can deliver more visually pleasing
results with much fewer artifacts and sharper edges.

To further demonstrate the robustness of our method, the
visual comparison results on images from the Köhler [17]
dataset are also provided in Figure 7. Again, it can be seen
that artifacts and blurred edges in the zoom-in areas (see
characters ‘B’, ‘70’, and ‘15’) are noticeable for these previous
CNN based methods. Although results recovered by Kupyn [2]
and Tao [14] are sharper than other methods, distortion still
exists. We also tested the proposed DBCPeNet on some real-
world blurred images from [45], and the results are shown in
Figures 8 and 9. Since the kernel distribution and the kernel
size between the GoPro dataset and the dataset from [45]
are very different, the deblurring results by all the competing
networks trained on the GoPro dataset contain visible artifacts
and blurred edges (see the zoom-in areas). Compared with
the other competing methods [1], [14], [2], [15], however, our
method still reproduces sharper and more natural images. How
to train a blind deblurring network with strong generalization
capability remains an open problem that deserves further
investigation.

C. Ablation Study

It is generally agreed that a larger scale training dataset
which covers various image contents and blur models will
bring benefit to train a robust deep network. The type of scenes
and number of images in the current GoPro dataset, however,
are barely sufficient to train an efficient network. Rather than
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(a) Blurry image (b) Nah et al. [1] (c) Tao et al. [14]

(d) Kupyn et al. [2] (e) Zhang et al. [15] (f) Proposed

Fig. 4: Visual comparisons on a blurred image with high dynamic range. Image from the GoPro testing dataset [1].

(a) Blurry image (b) Nah et al. [1] (c) Tao et al. [14]

(d) Kupyn et al. [2] (e) Zhang et al. [15] (f) Proposed

Fig. 5: Visual comparisons on a blurred image with large depth of field. Image from the GoPro testing dataset [1].
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(a) Blurry image (b) Nah et al. [1] (c) Tao et al. [14]

(d) Kupyn et al. [2] (e) Zhang et al. [15] (f) Proposed

Fig. 6: Visual comparisons on a blurred image with moving objects. Image from the GoPro testing dataset [1].

(a) Blurry image (b) Nah et al. [1] (c) Tao et al. [14]

(d) Kupyn et al. [2] (e) Zhang et al. [15] (f) Proposed

Fig. 7: Deblurring results on the Köhler dataset [17] by different methods.
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(a) Blurry image (b) Nah et al. [1] (c) Tao et al. [14]

(d) Kupyn et al. [2] (e) Zhang et al. [15] (f) Proposed

Fig. 8: Visual comparisons on a real-world blurred image with moving object. Image from [45].

(a) Blurry image (b) Nah et al. [1] (c) Tao et al. [14]

(d) Kupyn et al. [2] (e) Zhang et al. [15] (f) Proposed

Fig. 9: Visual comparisons on a real-world blurred image with living animal. Image from [45].

enlarging the training dataset, we propose to integrate the dark
and bright channels prior into CNN and exploit different scales
of images for the performance improvement. In order to verify
the effectiveness of the DBCPeL and IFSE structure, we con-
duct ablation studies to compare our proposed DBCPeNet with
several baseline networks. Besides, the quantitative evaluation
results of our DBCPeNet with different scale levels, different
merge operations, and different regularization terms are also
provided.

Evaluation of DBCPeL. As shown in Figure 3, the proposed

DBCPeL works in feature domain and is applied to both front
and back layers. The reason of our network design is two-
fold. (i) In the training phase, we have the ground-truth in the
final layer (image domain) to supervise the model learning.
Therefore, simply imposing DBCP on the final output images
cannot achieve significant improvement. (ii) The hidden layers
(feature domain) aim to convert the blurry image to sharp
image step by step. Considering that the property of DBCP
also exhibits in hidden layer features, enforcing DBCP and
sparse constraints in hidden layers can make the learning of
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Before D w/o constraint Before D with constraint After D w/o constraint After D with constraint

Fig. 10: One feature map before and after the dark channel extractor D with and without DBCP and sparse constraints.

TABLE II: Ablation study on the dark and bright channels
prior embedded layer (DBCPeL). The average PSNR (dB) on
GoPro testing dataset is shown.

Method PSNR
w/o DBCP 30.834
DBCP-final 30.891
DBCP-front 30.913
DBCP-front 2 30.917
DBCP-back 30.952
DBCP-back 2 30.955
DBCPeNet 31.102

early and deeper layers more effective.
We compare our DBCPeNet with 6 baseline networks,

including w/o DBCP, DBCP-final, DBCP-front, DBCP-front
2, DBCP-back, and DBCP-back 2. Here ‘w/o DBCP’ refers
to the model without using DBCPeL; ‘DBCP-final’ refers to
the model applying DBCP and sparse constraint only to the
final output image; ‘DBCP-front’ and ‘DBCP-front 2’ refer to
the model employing one and two DBCPeL in the front parts
of the network, respectively; and ‘DBCP-back’ and ‘DBCP-
back 2’ refer to the model using one and two DBCPeL in the
back parts of the network, respectively. All these 6 baseline
networks share the same backbone as our DBCPeNet, except
some of them take an additional convolutional layer to replace
the DBCPeL. It is worth pointing out that all these 6 baseline
networks use the proposed IFSE structure.

Table II shows the deblurring results. It can be seen that
the one without DBCPeL performs much worse than the
DBCPeNet in terms of PSNR (30.834 dB v.s. 31.102 dB).
If we simply add DBCP and sparse constraints on the final
output image, as done in previous DBCP based methods
[11], [12], we can only get about 0.06 dB gain (see model
DBCP-final in Table II). In contrast, placing the DBCPeL in
the front or back part of the network could benefit dynamic
scene deblurring (see models DBCP-front and DBCP-back in
Table II). However, adding more than one DBCPeL in the
front or back part of the network could not further boost the
performance (see models DBCP-front 2 and DBCP-back 2 in
Table II). This is mainly because the DBCPeL is introduced to
guide the learning of hidden layers. Simply replacing DBCPeL
in the same part of the network is not effective enough to learn
the front or deeper layers. Thus, we place DBCPeL in both
front and back layers and it achieves the best results.

To further verify the effectiveness of the proposed DBCPeL,
we visualize the feature maps before and after the dark channel

TABLE III: Ablation study on the image full scale exploitation
(IFSE). The average PSNR (dB) on GoPro testing dataset is
shown.

IFSE ×
√

PSNR 30.96 31.10

TABLE IV: Ablation study on the number of scales. The
average PSNR (dB) index is listed for different scale level
S on the benchmark datasets.

S = 1 S = 2 S = 3 S = 4

GoPro 30.67 30.81 31.10 30.92
Köhler 25.53 26.28 26.79 26.94

extractor D(·) with and without DBCP and sparse constraints.
In Figure 10, we randomly visualize one feature map before
the extractor D(·) (with the abs(·) operator). We could found
that the one with DBCP and sparse constraints has sharper
edge and its dark channel is sparser.
Evaluation of IFSE. To demonstrate the advantages of our
IFSE strategy, we compare DBCPeNet with a baseline multi-
scale architecture which only works in the coarse-to-fine
manner. Note that for a fair comparison, the baseline method
shares the same backbone as our DBCPeNet and uses the
same number of scales. Table III verifies our strategy. One
can see that the one adopting the proposed IFSE structure
(both coarse-to-fine and fine-to-coarse manners) can have 0.14
dB improvement in terms of PSNR index. These comparisons
firmly indicate the proposed IFSE structure benefits perfor-
mance improvement.
Number of Scales. We show the quantitative evaluation results
of our method with different scale level S in terms of PSNR
over the test data. In Table IV, one can notice that the multi-
scale architecture can bring better results for dynamic scene
deblurring. Our proposed DBCPeNet with S = 3 produces
the best results for GoPro testing dataset. While for the Köhler
dataset, the average PSNR index can be further improved with
the increase of scale level S. In this work, we take the scale
level S = 3 for both GoPro and Köhler dataset.
Evaluation of Merge Operations. To train the proposed
DBCeNet, we take the ‘concatenation’ as the merge operation
in both coarse-to-fine and fine-to-coarse training stages. To
verify the advantages of ‘concatenation’, we compare it with
several other merge operations, including addition, multiplica-
tion, and spatial transform [49]. Table V shows the quantitative
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TABLE V: Ablation study on the different merge operations.
The average PSNR (dB) on GoPro testing dataset is shown.

Operation PSNR
Addition 30.76
Multiplication-final 30.72
spatial transform [49] 30.84
Concatenation 31.10

TABLE VI: Ablation study on the different regularization
terms. The average PSNR (dB) on GoPro testing dataset is
shown.

`1 `2 without constraint
PSNR 31.10 30.91 30.84

evaluation results of different merge operations in terms of
PSNR on the GoPro test data. It is not a surprise that the opera-
tion ‘concatenation’ has higher PSNR scores than other merge
operations since it combines feature representations without
losing any information, resulting in better performance.

Evaluation of Regularization Terms. Since the dark and
bright channels of a sharp image are sparser than those of
a blurry image, the sparse constraint favors clear images over
blurred images. To verify the advantages of `1-regularization,
Table VI compares the results of `1-regularization with
`2-regularization and no constraint. One can see that `1-
regularization works the best.

V. CONCLUSION

In this work, we presented a simple yet effective Dark
and Bright Channels Prior embedded Network (DBCPeNet)
with a novel trainable dark and bright channels prior embed-
ded layer (DBCPeL), which aims to integrate channel prior
knowledge into a deep CNN for dynamic scene deblurring.
By extracting the dark and bright channels of shallow features
and enforcing sparsity on them, DBCPeNet can regularize
the solution space of the network. Additionally, DBCPeNet
works in both coarse-to-fine and fine-to-coarse manners to
exploit information of blurred images at different resolutions
to maximize information flow across scales. Benefiting from
the dark and bright channels prior constraint and the effective
multi-scale network architecture, the developed DBCPeNet
outperforms previous dynamic scene deblurring networks by
a large margin. Quantitative evaluations on the challenging
GoPro dataset showed that the proposed DBCPeNet had at
least 0.84 dB PSNR gains over the existing state-of-the-arts.
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