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Learning a Deep Single Image Contrast
Enhancer from Multi-Exposure Images
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Abstract—Due to the poor lighting condition and limited
dynamic range of digital imaging devices, the recorded images
are often under-/over-exposed and with low contrast. Most of
previous single image contrast enhancement (SICE) methods
adjust the tone curve to correct the contrast of an input image.
Those methods, however, often fail in revealing image details
because of the limited information in a single image. On the
other hand, the SICE task can be better accomplished if we
can learn extra information from appropriately collected training
data. In this paper, we propose to use the convolutional neural
network (CNN) to train a SICE enhancer. One key issue is how
to construct a training data set of low-contrast and high-contrast
image pairs for end-to-end CNN learning. To this end, we build
a large-scale multi-exposure image data set, which contains
589 elaborately selected high-resolution multi-exposure sequences
with 4,413 images. Thirteen representative multi-exposure image
fusion and stack-based high dynamic range imaging algorithms
are employed to generate the contrast enhanced images for each
sequence, and subjective experiments are conducted to screen the
best quality one as the reference image of each scene. With the
constructed data set, a CNN can be easily trained as the SICE
enhancer to improve the contrast of an under-/over-exposure
image. Experimental results demonstrate the advantages of our
method over existing SICE methods with a significant margin.

Index Terms—Single image contrast enhancement, multi-
exposure image fusion, convolutional neural network.

I. INTRODUCTION

EPRODUCING the natural scene with good contrast,

vivid color and rich details is an essential goal of
digital photography. The acquired images, however, are often
under-exposed or over-exposed because of poor lighting con-
ditions and the limited dynamic range of imaging device.
The resulting low contrast and low quality images will not
only degenerate the performance of many computer vision
and image analysis algorithms, but also degrade the visual
aesthetics of images [1]. Contrast enhancement is thus an
important step to improve the quality of recorded images and
make the image details more visible.
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Fig. 1. (a) A sequence with under- and over-exposed images. (b) The
enhanced image by a deghosting MEF method [2]. (c) The enhanced image
by a SICE method [3]. (d) The enhanced image by our method. (Note that
(c) and (d) are the enhanced results by a single under-exposed image.)

Traditional single image contrast enhancement (SICE) tech-
niques include those histogram-based algorithms [4]-[6],
which increase the contrast of an image by redistributing
the luminous intensity on histogram, and Retinex based algo-
rithms [7]-[9], which enhance the reflectance and illumination
components of the image separately. These methods, however,
are difficult to reproduce a high-quality image due to the com-
plex natural scenes and the limited information in a single low-
contrast image. Thanks to the development of imaging devices,
we are able to capture a sequence of multi-exposure images in
a short time to fulfil the dynamic range of a scene [10], [11].
With the sequence, multi-exposure image fusion (MEF) [2],
[12], [13] and stack-based high dynamic range (HDR) imaging
(with a following tone mapping operator) methods [14], [15]
can be applied to blend the multiple images with different
exposures into a perceptually more appealing image.

Generally speaking, MEF and stack-based HDR methods
will produce images with better visual quality than those
SICE methods since more information is available in the
multi-exposure sequence. However, the acquisition of multi-
exposure images will complicate the imaging process, and
camera shake or moving objects will lead to unpleasant fusion
artifacts such as the ghosting artifacts [16], [17]. Figure 1(a)
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shows a sequence of under/over-exposure images. Figure 1(b)
shows the output image by a state-of-the-art deghosting MEF
algorithm [2], which merges the multi-exposure images into
a high-visibility image. Figure 1(c) shows the result by a
state-of-the-art SICE method [3], which only takes an under-
exposure image as input (the image with red box shown at
Figure 1(a)). One can see that the MEF method could recover
more image details, which cannot be revealed by the SICE
method; however, it generates some ghosting artifacts due
to the displacement of different frames caused by the object
motion (such as human movement and ripples). In contrast,
the SICE method will not have such ghosting artifacts because
it takes only one single exposure image as input. Due to the
above reasons, SICE is more attractive and easier to implement
in practice, yet it is much more challenging because of the
limited information in a single image.

Considering that multi-image based MEF and single-image
based SICE methods have their pros and cons, one interesting
question is: can we develop a SICE method which can
approximate the contrast enhancement performance of MEF
methods while being free of the ghosting artifacts? In this
work, we make the first attempt to address this challenging
problem. Our idea is inspired by the success of discriminative
learning methods [18]-[20], especially the deep convolutional
neural network (CNN) methods [21], [22], in image restora-
tion. Compared with generative models which use high-quality
images to learn image priors, discriminative methods utilize
a set of degraded and ground-truth image pairs to learn a
model to enhance the given degraded image. As a powerful
discriminative learning method, CNN has been successfully
used in many low-level vision problems such as single image
super-resolution [23] and image denoising [24], where a large
amount of paired training samples can be generated or sim-
ulated. For example, one can down-sample a high-resolution
image to generate a corresponding low-resolution image, and
add noise to a clean image to generate a noisy observation
of it. In the application of contrast enhancement, unfortunately,
it is very hard to generate such paired images due to the
lack of a simple model to approximate the low-contrast
image generation process. To the best of our knowledge,
by far there is no dataset of paired low-contrast and high-
contrast images available for training a discriminative model
for SICE.

One significant contribution of this work is that we build
such a dataset of low-contrast and good-contrast image pairs,
which makes the discriminative learning of SICE enhancers
possible. The key idea is that we use state-of-the-art MEF
and stack-based HDR methods to reconstruct the reference
good-contrast image of a scene, while those under-exposure
or over-exposure images of the scene can be naturally taken
as the low-contrast counterparts. To build this dataset, we col-
lect multi-exposure sequences from 2 categories of scenes
(indoor and outdoor), and employ 13 recently developed MEF
and HDR algorithms to generate the high-contrast images
for each scene. Then, subjective experiments are conducted
to select the best MEF/HDR result for each scene, and
exclude those sequences which do not have satisfactory
outputs (e.g, ghosting artifacts). Finally, the multi-exposure
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sequences of 589 scenes and their corresponding high-quality
reference images are selected in the dataset. Each sequence has
3 to 18 low-contrast images with different exposure levels,
and there are 4,413 low-contrast images in total. With the
constructed dataset, we design a simple yet effective CNN to
learn a SICE enhancer, which is able to automatically enhance
the low-contrast images with different exposure levels. The
learned CNN based SICE enhancer demonstrates clear advan-
tages over existing SICE methods, outperforming them by a
large margin. The contributions of our work are summarized
as follows:

1) We build, for the first time to the best of our knowledge,
a large-scale multi-exposure image dataset which con-
tains low-contrast images with different exposure levels
and their corresponding high-quality reference image.
The constructed dataset makes end-to-end discriminative
learning of high performance SICE methods possible.
It also provides a platform to quantitatively evaluate,
at least to some extent, the performance of different
contrast enhancement algorithms.

2) With the constructed dataset, a well designed CNN is
trained for SICE, which demonstrates significant advan-
tages over existing SICE methods. Our work provides a
new solution to high performance SICE.

II. RELATED WORK
A. Single Image Contrast Enhancement

Single image contrast enhancement (SICE) aims to improve
the visibility of the scene in a given single low-contrast image.
It provides a way to enhance the low contrast photographs
captured from a high dynamic range scene [25]. Many his-
togram and Retinex based SICE methods have been proposed
in the past decades. Histogram-based methods [4], [S] have
been widely used because of their simplicity in enhancing
low-contrast images. Those methods attempt to redistribute the
luminous intensity on histogram in a global or local manner.
However, such simple redistribution operations may produce
serious unrealistic effects in the enhanced images since they
ignore image structural information [26]. To excavate the
structural information from the low-contrast image, Retinex-
based methods [7], [27] decompose the input image into
albedo and illumination layers, and adopt different strategies to
enhance the reflectance and illumination components. Most of
the previous SICE methods are based on some assumptions on
high-quality images, while they may not fully exploit the infor-
mation in the input image. On the other hand, the enhancement
capability of existing SICE methods is rather limited due to
the limited information in a single low-contrast image [9].
Recently, methods [28], [31] have been proposed to train a
CNN network to map the low dynamic range (LDR) images to
HDR images. In [29], a CNN is trained to set the parameters of
bilateral filters, which are then used to enhance an input image
to a desired image edited by professional photographers. Since
extra information can be learned from the external dataset,
in this work, we will elaborately build a dataset to learn
a powerful CNN-based SICE enhancer from multi-exposure
images.
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Fig. 2. Sample source image sequences with different exposure levels in our dataset.

B. MEF and Stack-Based HDR

Because of the limited dynamic range, traditional digital
imaging systems may lose structural details when shooting a
natural scene [30]. To address this issue, stack-based HDR
methods [14], [15] propose to merge bracketed multiple expo-
sure images into an HDR irradiance map, then employ a
tone mapping operator to compress the dynamic range of
HDR irradiance map so that the high-contrast image can
be displayed on regular monitors. Different from the HDR
approaches, MEF methods [2], [13] attempt to fuse the images
directly in the non-liner brightness domain to reproduce a
high-visibility image. Despite their successes on well-aligned
image sequences, the existence of camera shake and object
motion in many scenes often leads to ghosting artifacts in the
final enhanced results, limiting the applications of MEF and
HDR in practice. In the last decade, researchers have spent
much efforts to design de-ghosting algorithms [2], [14], [32]
and learning-based methods like [33] proposed to map the
multi-exposure image sequences to an HDR image. However,
it remains a challenging problem in MEF and HDR for
dynamic scenes. In this work, we elaborately select the well-
aligned image sequences to generate a good reference images
by MEF and HDR reconstruction methods.

C. CNN for Image Restoration

CNN has demonstrated its effectiveness in image restoration
and enhancement applications such as denoising [34], [35],
super-resolution [21] and deblurring [36]. In those applica-
tions, pairs of degraded images and their high-quality coun-
terparts can be easily generated. With those paired training
data, CNN can be used to learn a mapping function between
the degraded observations and their corresponding high-quality
reference images. However, for the application of SICE,
such rule-based, computer-generated training datasets are too
ideal to be true for real-world low-contrast images, where
the distribution of luminance is much more complex and
varies with different scenes, cameras and camera settings.
The lack of training data has hindered the adoption of CNN
methods for end-to-end SICE enhancer learning. In this work,

an elaborately designed dataset of low-/good-contrast image
pairs is built, with which CNN can be easily adopted to learn
powerful SICE enhancers.

III. MULTI-EXPOSURE IMAGE DATASET
AND REFERENCE IMAGE GENERATION
As discussed in the previous sections, the lack of paired
training data impedes the application of CNNs to SICE tasks.
In order to make end-to-end learning of SICE enhancers
possible, in this section we construct a dataset of multi-
exposure image sequences as well as the reference good-
contrast image for each sequence.

A. Objectives

There are two major objectives for our multi-exposure
image dataset construction. First, the dataset should contain
enough high resolution multi-exposure image sequences and
cover a diversity of scenes. Second, for each sequence, a high-
quality reference image should be generated so that image
pairs can be constructed for end-to-end learning.

Some multi-exposure image sequences are available in
literature [37], [38] and most of them were captured for
the study of MEF and stack-based HDR methods. However,
the total amount of such publicly available sequences is very
limited, and many of them were taken under indoor environ-
ment. Neither the number of sequences nor the diversity of
sequence exposure levels meets the requirement of real-world
applications. To achieve the first objective, we collect a large
number of sequences from both indoor and outdoor scenes,
and make sure that the photographs in our dataset cover a
broad range of scenes, subjects and lighting conditions. Some
sample sequences of our multi-exposure image dataset are
presented in Figure 2. Some sequence are from [37]', while
the others are collected by us.

The second objective is more challenging. Considering that
MEF and stack-based HDR methods can reproduce an image
with much higher contrast and visibility than a single exposure

1 http://rit-mcsl.org/fairchild/HDR.html
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image, we adopt the latest and state-of-the-art MEF and HDR
techniques to construct the reference image. However, there
is not an MEF or HDR algorithm which outperforms all
the other methods for different scenarios, and most of those
methods will generate certain ghosting artifacts for dynamic
sequences with moving objects under uncontrolled environ-
ment. To address this issue, we adopt 13 state-of-the-art MEF
and HDR algorithms to generate the high-contrast reference
images of all scenes, and conduct subjective experiments to
select the best output for each sequence. In addition, sequences
which cannot produce satisfactory outputs will be excluded
from the dataset. In this way, the reference images generated
in our dataset will have higher quality than any individual
existing MEF or HDR method.

B. Multi-Exposure Image Collection

To achieve the objectives mentioned above, we collect
and select multi-exposure image sequences of relatively sta-
tic scenes. The details of data collection and screening are
described as follows.

1) Data Collection: To ensure that a robust and general
SICE enhancer can be trained, the training data should
be collected from representative real-world scenarios with
commonly used imaging devices. In our dataset, the image
sequences are taken by different cameras and from different
scenes. Seven types of consumer grade cameras are used
to collect the image sequences, including Sony a7RII, Sony
NEX-5N, Canon EOS-5D Mark II, Canon EOS-750D, Nikon
D810, Nikon D7100 and iPhone 6s.

Exposures of indoor and outdoor scenes will be very differ-
ent even with the same Exposure Value (EV) setting. Since our
goal is to learn a SICE enhancer for automatically correcting
the exposure of a low-contrast image, the images we collected
should cover most of the exposure levels we would see in
our daily life. In this work, we collect image sequences from
both indoor and outdoor scenes under certain EV settings. For
the indoor scenes, we are able to set up a static environment
and use a tripod to capture well-aligned image sequences.
We collect 7 to 18 images for each indoor scene. The exposure
levels are manually set based on the lighting ratio of the scene.
For the uncontrolled outdoor environment, moving objects
(e.g., cars, walking people, shaking trees) make the acquisition
of well-aligned sequences very challenging. We use the con-
tinuous bracket mode to automatically shoot image sequences
with shifted exposures. To ensure that the sequence can be
well-aligned, for each outdoor scene, multiple sequences (with
EV shifted by £+ {0.5,0.7, 1.0, 2.0, 3.0}) are collected, and
each sequence contains 3 to 5 images. After collecting the
source images, a further screening process is conducted to
select desirable sequences for reference image generation.

2) Data Screening: In the data collection stage, we collected
more than 10,000 image sequences with different exposure
levels (including repeated sequences). However, many of them
contain distorted images or moving objects. We therefore
conduct an uphill screening process to refine the dataset.
Sequences with significantly distorted images (e.g., motion
blur, out of focus and visible sensor noise) or obvious moving
objects are discarded (see Figure 3 for some examples). As for
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Fig. 3. Sample source image sequences excluded from the dataset. Blue and
red arrows point out the moving objects in different frames, which will cause
“ghosting” artifacts in the reference image generated by MEF or stack-based
HDR algorithms.

those repeated sequences, we manually choose the most well-
aligned one. In the screening stage, more than 85% of the
collected sequences are weeded out, and about 1,200 candidate
sequences are remaining in the dataset. We then apply state-
of-the-arts MEF and stack-based HDR algorithms to those
sequences to generate reference images, and further screen
the sequences based on the quality of reference images.

C. Reference Image Generation

Having the candidate sequences, we propose to generate
high-quality reference images with MEF and stack-based
HDR methods. 13 state-of-the-art MEF and HDR algorithms
are employed in this process, including 8 MEF methods:
Mertens09 [13], Raman09 [39], Shenl1 [40], Zhangl2 [41],
Lil3 [12], Shenl4 [42], Mal7 [2], Koul7 [43], and 5 stack-
based HDR methods: Senl2 [14], Hul3 [32], Brucel4 [44],
Ohl15 [15], Photomatix [45]. The implementations of those
algorithms are obtained from the original authors, except for
Raman09 and Brucel4 whose implementations are from an
HDR toolbox in Github [46]. To generate the faithful results
of original scenes and for a fair comparison, we manually tune
the tone-mapping operators for Senl2, Hul3 and Ohl5 by
Photomatix. As a result, there is one image for each scene by
each method for subjective evaluation. Note that we also use
Photomatix to generate the HDR irradiance map for Hul3,
which outputs a stack of well-aligned low dynamic range
images. As for Ranman09 and Brucel4, we adopt the tone-
mapping operators as presented in the original papers.

With the 1,200 sequences and 13 MEF/HDR algorithms,
we generate 1,200 x 13 = 15,600 fusion results. We then
invite 13 amateur photographers and 5 volunteers who do not
have much photographing experience to perform a pairwise
comparison among the 13 MEF/HDR results of each sequence.
All of the 18 volunteers perform subjective evaluation under
the same environment with a 4K Ultra HD LED Monitor.
Besides, all volunteers do not have a bias on this task and
they were given instructions before the experiments. As shown
in Figure 4, a customized interface is adopted to render a pair
of images simultaneously at their original resolutions but in
random order. The subject can move the mouse on the image
so that the zoom-in windows of the local region can be shown
for better comparison. For each pair of images, the subject
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Fig. 4. User interface for subjective testing.

only need to indicate his/her preference to either the left
image or the right image. Therefore, for each subject the best
result of one scene will be selected after 12 pair comparisons.
By majority voting, the 1,200 best reference images for the
1,200 sequences are selected after the subjective test.

However, for some challenging sequences which contain
unaligned contents, even the best MEF/HDR results can have
unsatisfactory quality. We then abandon those images from
our dataset. Eventually, only 589 high-quality reference images
and their corresponding sequences are remained in our dataset.
Figure 5 shows the percentage of selected images for each
MEF or HDR algorithm, as well as some examples of the
reference image selection. As one popular image quality
assessment (IQA) metric for MEF images, MEF-SSIM [16]
is employed here to quantitatively compare the 13 selected
MEF/HDR algorithms. Note that since the MEF-SSIM metric
is designed to evaluate MEF algorithms on static scenes, it is
not applicable to the evaluation of MEF/HDR methods on
dynamic scenes. In addition, some of the MEF/HDR methods
(such as [12], [13], [39], and [43]) are designed to process sta-
tic scene sequences. When applied to dynamic scene sequences
(even with small misaligned), these methods often generate
ghosting artifacts in the final fusion results. Therefore, we only
adopt MEF-SSIM to evaluate the MEF/HDR algorithms on
100 indoor static image sequences. The results are listed
in Table I. One can see that the quality metric MEF-SSIM
is in accordance with the proposed subjective testing to some
extent. For example, [43] is one of the mostly selected MEF
methods, while it also gets the highest score of quality
metric [16].

In summary, our dataset includes 589 sequences from indoor
and outdoor scenes, containing a total number of 4,413 multi-
exposure images. Among them, 56 sequences are obtained
from existing literature [37], and the remaining are collected
by ourselves. The resolution of most images are between
3000 x 2000 and 6000 x 4000. To our best knowledge, it is the
largest multi-exposure image dataset so far (dataset available
at https://github.com/csjcai/SICE). Furthermore, the results
of 13 MEF/HDR algorithms on each sequence, as well as the
selected reference images, are also provided in the dataset.
Our dataset has various potential applications, for example,
MEF and HDR algorithm evaluation, image quality assessment
metric design, and SICE enhancer training. Particularly, in this
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TABLE I

THE QUALITY METRIC MEF-SSIM [16] OF THIRTEEN MEF AND
HDR ALGORITHMS ON 100 INDOOR IMAGE SEQUENCES. THE
QUALITY VALUE RANGES [0, 1] WITH A HIGHER VALUE
INDICATING BETTER PERCEPTUAL QUALITY

Method | Average Score | Rank

Raman09 [39] 0.817 13
Shen14 [42] 0.839 12
Lil3 [12] 0.925 5
Brucel4 [44] 0.873 10
Shenl1 [40] 0.907 9
Zhang12 [41] 0.871 11
Mertens09 [13] 0.931 3
Photomatix [45] 0.919 7
Mal7 [2] 0.934 2
Koul7 [43] 0.937 1
Senl2 [14] 0.927 4
Ohl15 [15] 0.921 6
Hul3 [32] 0919 7

paper we utilize the constructed dataset to train a CNN based
powerful SICE enhancer, as introduced in the next section.

IV. CNN-BASED SICE LEARNING

With the constructed dataset, we can design a CNN based
SICE enhancer to learn a mapping function between the low-
contrast input image I (x, y) € %> and its corresponding refer-
ence image I..r(x,y) € 93 Intuitively, one can directly train
a deep CNN H (I, W) with parameters W to achieve this goal,
and Figure 6 shows such a network architecture with 15 layers.
We train the direct network with Mean Squared Error (MSE)
loss, £1-norm loss and Structural dissimilarity (DSSIM) [47]
loss, respectively. The MSE loss function to be minimized is:

I < @) i 2
(W) =~ Z 1y — HAD, W7 (1)
1
¢1-norm loss function can be formulated as:
I~ ,
_ (@)
hW) =2 iy = HAD, W), )
1

The DSSIM loss function, which is derived from structural
similarity (SSIM) [48], can be formulated as:

ey —HAD, W2 3)

n
DSSIM(W) = 1 > —ssim(1Y)

"5
However, we experimentally found that the result obtained
by directly training such a network in original image domain
is not very satisfactory. In Figures 7(a) - 7(e), we show
an example of the (cropped) original low-contrast image,
the reference image (generated by MEF method [43]) and the
enhanced result by the CNN with MSE loss, DSSIM loss and
¢1-norm loss, respectively. One can see that the enhancement
results exhibit some color shift. This is probably because
one stage CNN in original intensity may have difficulties in
balancing the enhancement of smooth and texture components
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Reference image generation. Left: Pie chart illuminates the percentage of images generated by different MEF and stack-based HDR algorithms.

Right: Sample fusion results by different MEF and HDR algorithms. The one with red tick has the highest score in the subjective quality discrimination test,

which is then selected as the reference image for that scene in our dataset.

Low-contrast lmage Enhanced Image
~
Loss
12 layers

Fig. 6. The 15 layers direct CNN network architecture.

of an image. In Section V, we would take those 3 direct
networks with ¢1, MSE and DSSIM loss function as the
baseline methods, and provide both the visual and quantitative
results of them for further comparisons.

According to the Retinex theory [49], the low-frequency
information of an image represents the global naturalness, and
the high-frequency information represents the local details.
It is a common practice that we can separate the image
low-frequency component and high-frequency component and
process them individually. Several MEF/HDR algorithms, such
as [50]-[53], have been proposed to decompose an image into
high and low frequency components to preserve image details
and colors in the brightest/darkest regions. In order to train
a CNN which can not only enhance the luminance range of
the low-contrast image but also reveal some missing details,
it is important for the network to make an appropriate balance
between high and low frequency components. Inspired by
those previous works [50]-[53], we first decompose the low-
contrast image and the reference image into a low-frequency
luminance component L(x,y) € %3 and a high-frequency
detail component R(x, y) € R3:

I(x,y)=L(x,y)+ R(x,y) 4)

The decomposition is performed by applying the weighted
least squares (WLS) method [54] to each channel.

After decomposition, a two-stage CNN scheme can be
developed to learn the SICE enhancer. In the first stage,
a luminance enhancer and a detail enhancer are trained in
parallel to enhance the two components with different loss
functions. In the second stage, the two enhanced components

are merged as the input, and another CNN is trained to enhance
the whole image to the desired reference. Figure 8 illustrates
the training procedure of the proposed method.

A. Network Overview

The proposed CNN has 5 types of layers which are shown
in Figure 8 with 5 different colors. i) Conv+PReLU: 64 filters
of size 3x3, 5x5 and 9 x9 with strides 1 and 2 are used to gen-
erate 64 feature maps, and PReLU (parametric rectified linear
unit) [55] is utilized for the nonlinearity. ii) Deconv+PReLU:
64 filters of size 9 x 9, 5 x 5 and 3 x 3 with strides 2 and 1
are used to generate 64 feature maps, and PReLU is utilized
as the activation function. iii) Conv+BN+PReLU: 64 filters of
size 3 x 3 are used, and batch normalization [56] is added
between convolution and PReLLU. iv) Conv: 3 filters of size
1 x 1 are used to reconstruct the output. v) Skip connection:
the add operation is used to connect the feature maps of two
layers.

1) Stride Convolution and Deconvolution: The convolu-
tional operations will reduce the size of feature maps.
To ensure that the output image will have the same size as the
input one, methods have been proposed to pad zeros before
convolutions [21]. However, for the luminance enhancement
network, we experimentally found that padding zeros would
lead to artifacts around the boundary of the output image.
Therefore, instead of padding zeros, we apply deconvolutions
to keep the size of the output unchanged. The convolutional
and deconvolutional strategy not only avoid artifacts in the
boundary area, but also reduce computational burden with
stride filters.

2) Parametric Rectified Linear Unit: In many CNN-
based image restoration methods [21], [23], rectified linear
unit (ReLU) is adopted as the activation function. However,
since both the positive and negative coefficients contain impor-
tant local structural information of the input image, simply
setting the negative responses to zeros may not be a good
choice. In this paper, we adopt the PReL.U as the activation
function, which could improve model fitting with nearly
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The enhancement results of different networks. (a) Original. (b) Reference. (c) Direct network with MSE loss. (d) Direct network with DSSIM loss.

(e) Direct network with £ loss. (f) First stage of our network. (g) Jointly fine-tuning of first stage (DSSIM loss). (h) Second stage of our network.
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zero extra computational cost and little over-fitting risk [55].
Without ignoring negative coefficients, PReLU is able to
generate high quality estimation with less filters. In Figure 9,
we provide some visual examples to compare the two activa-
tion functions.

B. Component Enhancement Network
1) Luminance Enhancement Network: In order to increase
the contrast of luminance map L and enforce spatial

. Convolution +BN + PReLU

———— Skip connection

Convolution

The proposed CNN network architecture.

smoothness on it, we train a luminance enhancer to learn a
mapping function between the luminance component Lo, igina
of the input low-contrast image and the luminance component
L,y of the reference image. Since the luminance component
represents the global naturalness, the local receptive fields
of the network is set larger to connect with more pixels in
the original image. In order to increase the receptive fields
while preventing the loss of information caused by the stride
convolution operation, we adopt U-net [57] as the luminance
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Fig. 9.

TABLE I
LUMINANCE ENHANCEMENT NETWORK ARCHITECTURE

Layer | Activation size
Input 129 x 129 x 3
9x9x64 conv, stride?2 61 x 61 x 64
5 x5 x64 conv, stride 2 29 x 29 x 64
3x3x64 conv, stride 1 27 x 27 x 64
3 x 3 x64 deconv, stride 1 29 x 29 x 64
5 x5 x 64 deconv, stride 2 61 x 61 x 64
Skip connection 61 x 61 x 64
9x9x3 deconv, stride 2 129 x 129 x 3
Skip connection 129 x 129 x 3
1x1x3 conv, stride 1 129 x 129 x 3

enhancement network. The details of the proposed luminance
enhancement network are summarized in Table II.

The MSE is adopted as the loss function, where Fy (-, ®)
denotes the luminance CNN mapping function with parame-
ters ©:

1 <& . .
1(0) = ; Z ”L£Qf - FL(L(()lr)iginal’ ®)”%7 )
i

2) Detail Enhancement Network: A CNN mapping func-
tion Fg with parameters  is trained to enhance the detail
component Ryigina; Of the input low-contrast image to the
detail component R,.r of the reference image. Inspired
by [21], [35], and [58], we adopt residual learning strategy
for our detail enhancement network. According to [58], this
structure guarantees that the input information can be prop-
agated through all parameter layers, which helps to train the
network. And we experimentally found that residual learning
can not only result in faster but also more stable convergence
than the direct mapping network. The details of the proposed
detail enhancement network are summarized in Table III.

Considering that the high-frequency detail component will
generally follow Laplacian distribution and contain some noise
and outliers, we use the ¢|-norm loss function:

SN0 )
l(Q)=;Z|Rr’ef—FR(Rl
I

original®

Q) (6)

C. Whole Image Enhancement Network

By using the luminance and detail enhancement CNNs,
we are able to enhance the luminance range and recover more

The enhancement results by using ReLU and PReLU. (a) Original. (b) PReLU with 64 filters. (c) ReLU with 64 filters. (d) ReLU with 128 filters.

TABLE III
DETAIL ENHANCEMENT NETWORK ARCHITECTURE

Layer | Activation size
Input 129 x 129 x 3
3x3x64 conv, stridel, padl | 129 x 129 x 64
3x3x64 conv, stridel, pad 1l | 129 x 129 x 64
3x3x64 conv, stridel, padl | 129 x 129 x 64
3x3x64 conv, stride 1, pad 1l | 129 x 129 x 64
3x3x64 conv, stridel, padl | 129 x 129 x 64
3x3x64 conv, stride 1, pad 1l | 129 x 129 x 64
1x1x3 conv, stride 1 129 x 129 x 3

Residual sum 129 x 129 x 3

TABLE IV

WHOLE IMAGE ENHANCEMENT NETWORK ARCHITECTURE

Layer | Activation size
Input 129 x 129 x 3
3x3x64 conv, stride 1, pad 1, BN | 129 x 129 x 64
3x3x64 conv, stridel, pad 1, BN | 129 x 129 x 64
3x3x64 conv, stridel, pad 1, BN | 129 x 129 x 64
3x3x64 conv, stride 1, pad 1, BN | 129 x 129 x 64
3x3x64 conv, stride 1, pad 1, BN | 129 x 129 x 64
3x3x64 conv, stridel, pad1l, BN | 129 x 129 x 64
1x1x3 conv, stride 1 129 x 129 x 3

Residual sum 129 x 129 x 3

details of the original low-contrast image. However, we can-
not ensure the overall visual quality of the enhanced image
because the two CNNs are trained separately on luminance and
detail components. Moreover, since the source image contain
both dark region and brightness region, using only the com-
ponent network is not powerful enough to model the mapping
function from low-contrast image to high quality image, which
may cause color shifts in the final image. Therefore, we merge
the two enhanced components into one image, and introduce
another CNN to further refine it to the desired reference
image. The whole image enhancement network architecture is
same as the detail enhancement network, except that the batch
normalization (BN) operation is used here. The details of the
proposed whole image enhancement network are summarized
in Table IV.

To promote the perceptual quality of the final outputs,
the perceptually-motivated DSSIM measure is employed as



CAl et al.: LEARNING A DEEP SINGLE IMAGE CONTRAST ENHANCER FROM MULTI-EXPOSURE IMAGES

THEEN

Fig. 10.

2057

®

Single image contrast enhancement results on an under-exposed image by different methods (PSNR/FSIM). (a) Original. (b) Reference.

(c) CVC [5] (13.01/0.8775). (d) AGCWD [6] (13.55/0.8863). (e) NEP [8] (16.44/0.8913). (f) SRIE [3] (14.88/0.8902). (g) LIME [1] (13.66/0.8372).
(h) Li [59] (15.13/0.8897). (i) DN (MSE) (19.58/0.9140). (j) DN (¢£1) (18.94/0.9037). (k) DN (DSSIM) (18.66/0.9206). (1) Ours (20.27/0.9379).

() @

Fig. 11.

@ (3] 0

Binary mask visualization of Figure 10 (Intensity less than 5 would be assigned 1, otherwise 0). (a) Original. (b) Reference. (c) CVC. (d) AGCWD.

(e) NEP. (f) SRIE. (g) LIME. (h) Li. (i) DN (MSE). (j) DN (£1). (k) DN (DSSIM). (1) Ours.

the loss function, where I,y and I..; represent the input
image and its corresponding reference image, respectively, and
F(-,¥) is the CNN mapping function with parameters ‘V':

1 . . .
DSSIM(¥) = ~ >a —mm(lr(;} - F(Il.(;})m, )2 (7)
i

For those two stages, we first train them separately. After
the first stage network is trained, we fix the learned weights
(® and Q) and train the second stage network to learn the
weights . Having finished the training of the two networks,
we remove the loss functions used in the first stage, and jointly
fine-tune the whole system with the DSSIM loss as the loss
function. In other words, the pre-trained two networks are used
as initialization to fine-tune the whole network. This is an end-
to-end training scheme.

Figures 7(f) - 7(h) show the enhanced image in the first
stage, jointly fine-tuning of first stage with DSSIM loss and
the final output, respectively. Although the enhancement result
by jointly training the CNNs in the first stage looks sharper
than those direct networks with MSE, DSSIM and ¢; loss,
it still exhibits some color distortions and detail artifacts. One
can see that a two-stage training strategy yields better visual
quality than a direct one-stage CNN, and it can correct such
color shift and balance the enhancement of smooth and texture
components of an image.

V. EXPERIMENTAL RESULTS

We evaluate the proposed CNN enhancer on the built multi-
exposure image dataset as well as images outside the dataset.
We first present the experimental settings, and then present the
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Single image contrast enhancement results on an over-exposed image by different methods (PSNR/FSIM). (a) Original. (b) Reference.

(c) CVC [5] (14.66/0.8344). (d) AGCWD [6] (16.03/0.8843). (e) NEP [8] (15.94/0.8561). (f) SRIE [3] (17.01/0.9013). (g) LIME [1] (15.99/0.8577).
(h) Li [59] (15.76/0.8547). (i) DN (MSE) (19.12/0.9117). (j) DN (¢£1) (17.16/0.9068). (k) DN (DSSIM) (18.64/0.9296). (1) Ours (20.14/0.9316).

Fig. 13.

Binary mask visualization of Figure 12 (Intensity higher than 225 would be assigned 1, otherwise 0). (a) Original. (b) Reference. (c) CVC.

(d) AGCWD. (e) NEP. (f) SRIE. (g) LIME. (h) Li. (i) DN (MSE). (j) DN (¢1). (k) DN (DSSIM). (1) Ours.

comparison results with state-of-the-art SICE methods, as well
as MEF and stack-based HDR methods. We end up with a
discussion on failure case.

A. Experimental Setting

We split all the 589 sequences randomly into training,
validation, and test sets with a ratio of 7:1:2. All the three
sets are guaranteed to contain images from indoor and outdoor
scenes, which contain images with different exposure levels.
Note that to further demonstrate the robustness of our method,
we also conduct experiments on images outside our dataset,
specifically, images from [14].2 720, 128 patches of size
129 x 129 are cropped from the training images, and stochastic

2https :/limages.google.com/.

gradient descent (SGD) with a batch size of 80 patches is
used in training. We implement our model using the Tensor-
Flow package. The momentum parameter and weight decay
parameter are set to 0.9 and 0.0001, respectively. The method
described in [55] is employed to initialize the weights, and
the learning rate is initially set to 0.1 with a decaying factor
of 10 for every 30 epochs. Our training process takes about
1 hours for one epoch with a Nvidia Titan X GPU. All the
experiments are carried out on a PC with Intel(R) Core(TM)
17-5820K CPU 3.30GHz and 64G memory.

B. Comparisons With SICE Methods

We compare the proposed CNN-based SICE enhancer with
6 state-of-the-art and representative SICE methods, including
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Fig. 14.
(e) SRIE [3]. (f) LIME [1]. (g) Li [59]. (h) Ours.

TABLE V

AVERAGE PSNR (DB), FSIM INDICES AND RUNNING TIME FOR
DIFFERENT SICE AND BASELINE CNN METHODS.
(DN MEANS DIRECT NETWORK)

(€3]

Single image contrast enhancement results on an under-exposed image from [14]. (a) Original. (b) CVC [5]. (c) AGCWD [6]. (d) NEP [8].

TABLE VI

THE NUMBER OF FLOPS (FLOATING-POINT OPEARATIONS)
OF THE PROPOSED NETWORKS. (M: MEGABYTE)

Under-exposure Over-exposure Time Network ‘ FLOPs
PSNR | FSIM | PSNR | FSIM | (sec.) Luminance enhancement network 57 MFLOPS
CVC [5] 13.47 | 0.8901 15.11 | 0.8448 | 4.64 Detail enhancement network 443 MFLOPS
AGCWD [6] | 13.96 | 0.8996 | 15.24 | 0.8601 | 18.75 Whole Image enhancement network | 444 MFLOPS
NEP [8] 17.21 | 0.9013 | 15.62 | 0.8971 689 Total 944 MFLOPS
SRIE [3] 16.53 | 0.8978 | 17.03 | 0.9209 le3
LIME [1] 17.68 | 0.9042 | 15.79 | 0.8712 | 246
Li [59] 15.79 | 0.8966 | 15.38 | 0.8743 le3 .
DN (MSE) 043 09171 2001 09269 | 23.69 enh.an.cement results,. losel many details Of. the scene, and
DN (/1) 1876 | 09108 | 19.96 | 09237 | 23.69 e.xhlblts some color dlstortlor}S. Compared with these conven-
DN (DSSIM) | 18.47 | 0.9284 | 19.60 | 0.9304 | 23.69 tional methods and the baseline CNN methods, the resu'lts by
Proposed 19.77 | 0.9347 | 20.21 | 0.9354 | 26.47 our CNN based enhancer have balanced contrast. The image

histogram-based methods (CVC [5] and AGCWD [6]),
Retinex-based methods (NEP [8], SRIE [3] and LIME [1])
and Li’s method [59]. The codes of [1], [3], [8], and [59]
are from the original authors, and [5], [6] are from a contrast
enhancement toolbox.? To verify the effectiveness of our two-
stage network, we provide both the visual and quantitative
comparisons between the proposed method and 3 baseline
direct networks (with ¢1, MSE and DSSIM loss). Note that
for all the methods, we set the different model parameters for

under-exposed and over-exposed images.
1) Comparison on Images From Our Dataset: Figure 10

shows the results on an under-exposure image. The reference
image provided in our dataset is also shown. Since the input
image contains both bright and dark areas, the histogram-based
methods show limited capacity in enhancing image details.
Retinex-based methods extract information locally, and the
results by NEP, LIME and Li’s methods improve the overall
visibility of the scene. For those baseline CNN methods,
they can produce acceptable visual quality compared to the
reference. However, these methods tend to generate unnatural

3 https://github.com/yunfuliu/pixkit.

details in most regions are revealed. Figure 12 shows the
results on an over-exposure image. Our CNN based enhancer
recovers vivid color as well as more details of the scene.

To find out whether regions are saturated or not, the sat-
uration binary mask visualization is also provided. We first
convert the RGB image into gray, then threshold the intensity
for classifying under-/over-saturation regions. For under-
saturation images, intensity less than 5 is assigned as true,
otherwise false, as shown in Figure 11. For over-saturation
images, intensity higher than 225 is assigned as true, otherwise
false, as shown in Figure 13. From Figures 11 and 13,
one can see that the CNN methods (both the direct net-
work and two-stage network) can recover almost the same
details as the reference images, which demonstrates the advan-
tages of our established dataset and proposed learning-based
method.

By using the reference images provided in our dataset
as enhancement “groundtruth”, we are able to quantitatively
evaluate different methods in terms of PSNR and FSIM [60]
indices. The results are summarized in Table V. It is not a
surprise that our CNN based enhancer has much higher PSNR
and FSIM indices than other methods since it learns additional
information from external training data. Nonetheless, this
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(a) (®)

© ' T

Fig. 15.
(e) SRIE [3]. (f) LIME [1]. (g) Li [59]. (h) Ours.
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(@ (h)

Single image contrast enhancement results on another under-exposed image from [14]. (a) Original. (b) CVC [5]. (c) AGCWD [6]. (d) NEP [8].

(C)

Fig. 16.  Comparison between MEF and our method on a static scene.
(a) The scene content. (b) Image sequence. (c) Fusion result by [43].
(d) Ours.

validates our original motivation to develop a SICE method
which could approximate the performance of MEF methods
but using only a single image as input. The running time
by different methods is also listed in Table V. The number
of FLOPs (FLoating-point OPerations) of our algorithms to
process an image of resolution 129 x 129 x 3 are also provided,
as shown in Table VI. One can see that our method (run
on CPU) is comparable to histogram-based methods on speed,

and runs much faster than others.
2) Visual Comparison on Images Outside our Dataset:

To further demonstrate the robustness of our method, we evalu-
ate our method on images outside our dataset. Considering that
most of the existing SICE methods are designed to enhance
low light images, we primarily conduct experiments on low
light images for a fair comparison. Figures 14 and 15 show the
results on two images. One can see that although methods such
as NEP, LIME, Li and the baseline CNN methods can reveal
the detail from the dark region to some extent, the results
enhanced by those methods are not pleasant enough (with
obvious artifacts, unnaturalness and color distortions). Our

Fig. 17. Comparison between MEF and our method on dynamic scene.
(a) The scene content. (b) Image sequence. (c) Fusion result by [43].
(d) Ours.

two steam and two stage CNN not only reveals the structural
information from the original image, but also presents a more
natural result. Since reference images are not available for
those images outside our dataset, quantitative measures such
as PSNR and FSIM cannot be computed.

C. Comparisons With MEF Method

In this sub-section, we compare our single-image based
SICE method with a state-of-the-art multi-image based MEF
method [43] on a static scene and a dynamic scene, respec-
tively. Figure 16 shows the results on a static scene. One
can see that the MEF method [43] successfully delivers high
quality estimation by extracting informative regions from
multi-exposure images. Using only one observation as input,
our CNN enhancer loses some color information, but its visual
quality is still comparable to the result by MEFE. Figure 17
shows the results on a dynamic scene, which demonstrate the
advantage of SICE method over MEF. Our method produces
similar contrast and structural details to the MEF method;
however, our SICE method is free of ghosting artifacts, which



CAl et al.: LEARNING A DEEP SINGLE IMAGE CONTRAST ENHANCER FROM MULTI-EXPOSURE IMAGES

m’
| |

Failure case. (a) Original. (b) MEF. (c) Ours.

Fig. 18.

are highly visible in the MEF result. It should be noted that the
ghosting artifacts produced by the MEF method [43] could be
significantly reduced by using ghost removal algorithms such
as those in [53] and [32].

D. Failure Case

Our CNN based SICE method learns a complex nonlin-
ear mapping function to map a low-contrast (either under-
exposure or over-exposure) region to a good contrast region.
Guided by the reference images generated by MEF/HDR
methods, our method is trained to be able to reveal more details
from a single low-contrast image than traditional SICE meth-
ods, which has been validated in our experiments presented in
previous sections. However, it is also found that our method
may fail to recover the details for large and severely over-
exposed regions. Figure 18 shows an example. One can see
that the missing color and structures in the color chart are not
recovered, while the details can be seen in the reference image
generated by MEF/HDR methods. The reason for the failure
may be that the over-exposure is too severe (in terms of both
level and area) so that there is little information the CNN can
use to synthesize the missing details in the neighborhood.

VI. CONCLUSION AND FUTURE WORK

We built a multi-exposure image dataset, which has
589 image sequences and 4,413 high-resolution images of
different exposures. For each sequence, a corresponding high
quality reference image was generated by using 13 MEF
and stack-based HDR algorithms. Subjective tests are also
conducted to screen the best quality one as the reference image
of each scene. The availability of low-contrast images and their
high-quality reference images in our dataset allows the end-to-
end learning of high performance SICE methods. As a demon-
stration, we developed a simple yet powerful CNN-based
SICE enhancer, which is capable of adaptively generating high
quality enhancement result for a single over-exposed or under-
exposed input image. Our experimental results showed that the
developed SICE enhancer significantly outperforms state-of-
the-art SICE methods, and even outperforms MEF and stack-
based HDR methods for dynamic scenes.

Video enhancement is another important application.
To apply the proposed methods to videos, we could consider
enlarging our dataset and learning an LSTM (long short-
term memory) based CNN enhancer to convert the conven-
tional videos to HDR videos. This will be one of our future
works.
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